EVIDENCE AGAINST THE INVOLVEMENT OF PROSTAGLANDINS IN THE VASOCONSTRICTOR ACTION OF CALCIUM ION IN RAT MESENTERIC BLOOD VESSELS

I.M. COUPAR

Victorian College of Pharmacy, School of Pharmacology, 381 Royal Parade, Parkville, Victoria, Australia 3052

- 1 Prostaglandin E_2 (PGE₂) has been claimed to be essential to the vasoconstrictor action of noradrenaline in rat mesenteric blood vessels. Since noradrenaline acts by releasing intracellular calcium, experiments have been performed using the perfused rat superior mesenteric artery preparation to determine whether prostaglandin synthesis is necessary for the direct vasoconstrictor action of calcium.
- 2 The cyclo-oxygenase inhibitors, indomethacin and 5,8,11,14-eicosatetraynoic acid (ETA), inhibited responses to noradrenaline and calcium but both were less effective in inhibiting the response to calcium than to noradrenaline.
- 3 PGE₂ (6 ng-20 μ g/ml) failed to overcome the inhibitory effect of indomethacin (62 μ g/ml) and ETA (10 μ g/ml) on the response to the EC₅₀ of Ca²⁺ (100 μ g/ml). The EC₅₀ of Ca²⁺ did not significantly increase PGE₂-like release by the blood vessels from the resting value of 19 ± 8 pg of PGE₂ equivalents/min.
- 4 PGA₁ ($6 \mu g/ml$) and the thromboxane A₂ agonist, U-46619 (200 ng/ml), both caused full restoration of indomethacin-depressed responses to calcium, but did not restore responses depressed by ETA. U-46619 (200 ng/ml) also reversed the inhibitory effect of papaverine ($4 \mu g/ml$) and caused a 1.6 fold potentiation of Ca²⁺ responses.
- 5 The results do not support the hypothesis that prostaglandin synthesis is essential to the vasoconstrictor action of Ca^{2+} in rat mesenteric blood vessels.

Introduction

There is some evidence which suggests that prostaglandin E₂ (PGE₂) is essential to the vasoconstrictor action of noradrenaline in rat mesenteric blood vessels. For example, noradrenaline increases the release of PGE2-like activity from these blood vessels (Wolfe, Rostworowski & Manku, 1979; Coupar, 1980a), and indomethacin, within and above the concentration range known to inhibit cyclooxygenase selectively (Flower, 1974), causes a large depression of the vasoconstrictor response to noradrenaline (Horrobin, Manku, Karmali, Nassar & Davies, 1974; Coupar & McLennan, 1978). This indomethacin-induced depression of the response to noradrenaline is associated with a concurrent abolition of PGE₂-like release, and is overcome by adding exogenous PGE2 to the perfusion fluid (Coupar, 1980a).

The mechanism by which PGE₂ maintains or restores the response to noradrenaline in rat mesenteric blood vessels is not known but there are several potential sites of action in the sequence of excitation-contraction coupling. For example, noradrenaline produces vasoconstriction mainly by releasing intracellular Ca²⁺ from a binding site (Waugh, 1962;

Cuthbert & Sutter, 1965; Jhamandas & Nash, 1967; Hudgins & Weiss, 1968) to remove the inhibitory influence of the troponin C-like regulatory protein on the contractile proteins (Perry & Grand, 1979). The regulatory protein may be calmodulin which has been isolated from vascular and other smooth muscles (Perry & Grand, 1979; Grand, Perry & Weeks, 1979).

In view of the fact that Ca²⁺ is the fundamental cation responsible for coupling excitation to contraction, experiments have been undertaken to investigate whether prostaglandins sustain the effect of noradrenaline by acting as a necessary co-factor or intermediate to the vasoconstrictor action of Ca²⁺ itself. Part of this work has been presented to the Australian Physiological and Pharmacological Society (Coupar, 1980b).

Methods

Mesenteric blood vessels of male Sprague-Dawley rats (weight range of 200-300 g) were prepared for perfusion as described previously (McGregor, 1965;

Coupar & McLennan, 1978). The superior mesenteric artery was perfused at a flow rate of 2 ml/min (Masterflex peristaltic pump) with pregassed (5% CO₂ in O₂) solution maintained at 37°C, unless otherwise stated. For experiments involving noradrenaline-induced constriction Krebs-Henseleit solution with added dextrose was used of the following composition (g/l): NaCl 6.92, KCl 0.32, MgSO₄.7H₂O 0.29, KH₂PO₄.2H₂O 0.16, NaHCO₃ 2.1, CaCl₂ 0.28 and dextrose 2. A Ca²⁺-free/K⁺-rich depolarizing solution (Northover, 1968) of the following composition (g/l) was used for experiments involving Ca²⁺-induced constriction: K₂SO₄ 16, KHCO₃ 1, MgCl₂.6H₂O 0.215, NaH₂PO₄.2H₂O 0.65, dextrose 1.02. In experiments on the effect of Ca²⁺, the tissues were pretreated with phenoxybenzamine (1 µg/ml for 10 min) in order to block the effect of noradrenaline released by Ca²⁺. Responses to Ca2+ were then obtained by adding CaCl2 to the depolarizing solution and these were larger and more consistent than those induced by adding CaCl2 to Krebs-Henseleit solution. This was expected, since depolarization of the vascular smooth muscle membrane increases its permeability to Ca²⁺ (Briggs, 1962). Also, the solution permitted relatively large amounts of CaCl₂ to be added without Ca²⁺ salt precipitation as occurs in Krebs-Henseleit solution.

Constrictor responses were measured as increases in perfusion pressure and were recorded with a Statham P23 AC pressure transducer connected to a Grass polygraph (model 79c). In all experiments an equilibration period of 1 h was allowed before exposure of tissues to the drugs used. Tissues were exposed to only one prostaglandin and/or cyclo-oxygenase inhibitor each.

Release of prostaglandin E₂-like activity from perfused mesenteric blood vessels

Tissues were suspended in a 30 ml organ bath maintained at 37°C. The perfusate was collected under liquid paraffin and was continuously removed by a siphon tube. Prostaglandin-like activity was recovered from the perfusate by extraction (Unger, Stamford & Bennett, 1971) and was bioassayed against authentic PGE₂ on superfused rat fundus strips, equilibrated with a mixture of antagonists (atropine, mepyramine, phenoxybenzamine $0.1 \, \mu g/ml$, methysergide, propranolol $0.2 \, \mu g/ml$, indomethacin $2 \, \mu g/ml$) by previously described methods (Coupar, 1980a).

Statistical analysis

A 6 point bioassay analysis was used for comparing the linear regions in pairs of log concentration-effect lines for differences in position and slope (Colquhoun, 1971). A linear regression analysis was used for calculation of EC_{50} and IC_{50} (Moore, Shirley & Edwards, 1972). Results were considered statistically significant when P was less than 0.05.

Drugs

Stock solutions of prostaglandins were prepared at concentrations of 10 mg/ml in absolute ethanol. Working solutions of prostaglandins (1 mg/ml) were prepared as required by diluting the stock solution with 0.2 mol/l phosphate buffer. Solutions of indomethacin and 5,8,11,14-eicosatetraynoic acid (ETA) were prepared at a concentration of 10 mg/ml as required. Indomethacin was dissolved in 0.5\% w/v Na₂CO₃ and then quickly diluted to the required strength. ETA was dissolved in 1 volume of absolute ethanol, and then 2 volumes of 0.5% w/v Na₂CO₃ were added. The sources of drugs were: atropine sulphate (Sigma); 5,8,11,14-eicosatetraynoic acid (ETA; Roche); indomethacin (Merck, Sharp & Dohme); mepyramine maleate B.P. (May & Baker); methysergide hydrogen maleinate (Sandoz); (-)noradrenaline 'bitartrate (Levophed, Winthrop); papaverine hydrochloride (Macfarlan phenoxybenzamine hydrochloride (Smith, Kline & French); prostaglandins (PG)E2, A1 and (15)Shydroxy-11,9(epoxymethano)prosta-5Z, 13E-dienoic acid (U-46619; Upjohn); propranolol hydrochloride (ICI). Pilot experiments showed that ethanol in the concentrations used for preparing solutions of PGE2 and A1, U-46619 and ETA did not affect constrictor responses to noradrenaline and Ca^{2+} .

Results

Effect of indomethacin and 5,8,11,14eicosatetraynoic acid on noradrenaline- and calciuminduced responses

The basal perfusion pressure of tissues perfused with Krebs-Henseleit solution was 17 ± 1 mmHg (n = 11) and 36 ± 1 mmHg (n = 31) in tissues perfused with the Ca^{2+} -free/K⁺-rich depolarizing solution. Perfusion of noradrenaline produced a fast rise in pressure. The constrictor effect was maximal within 10 s and the approximate EC_{50} of noradrenaline was $2 \mu g/\text{ml}$. Vasoconstrictor responses to Ca^{2+} were slower than to noradrenaline, with a maximal effect reached within 1.5 min and an approximate EC_{50} of $100 \mu g/\text{ml}$.

To test the inhibitory effect of indomethacin, constrictor responses were obtained to the EC₅₀s of noradrenaline and Ca²⁺. Increasing concentrations

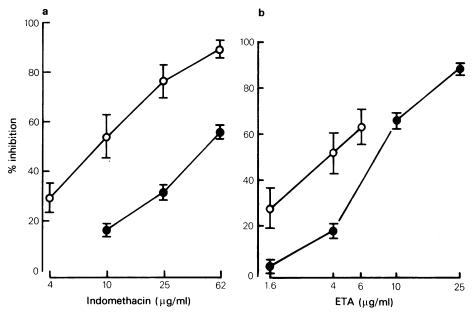


Figure 1 Percent inhibition of EC₅₀ constrictor responses to noradrenaline (\bigcirc) and Ca²⁺ (\bigcirc) by increasing concentrations of (a) indomethacin and (b) ETA. Each concentration of the cyclo-oxygenase inhibitors was perfused through tissues for 10 min before obtaining EC₅₀ responses to the agonists. Noradrenaline was perfused for 10 s and the EC₅₀ was 2 μ g/ml. Ca²⁺ (as CaCl₂) was perfused for 1.5 min, the EC₅₀ being 100 μ g/ml. Each point is the mean from 5 tissues. The bars represent the s.e.means.

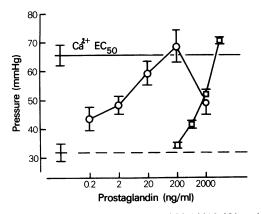
of indomethacin, which did not affect resting perfusion pressure, progressively inhibited the responses to both agonists (Figure 1a). However, 5.5 times more (95% confidence interval (CI) 10-3) indomethacin was required to inhibit Ca²⁺ to the same extent as noradrenaline. The IC₅₀ of indomethacin against noradrenaline was 9 µg/ml (95% CI, 37-2) but against Ca²⁺ was 50 μg/ml (95% CI, 160-18). The response of the tissues to Ca²⁺ and to noradrenaline were partially restored after perfusing with indomethacin-free solution. The response to the EC₅₀ of Ca²⁺ was reduced to $33 \pm 6\%$ of control by 62 µg/ml of indomethacin but this recovered to $86\pm6\%$ of control after 30 min and $91\pm6\%$ of control after 1 h (n = 4). The same concentration of indomethacin reduced the response to the EC50 of noradrenaline to $6\pm1\%$ of control. The response recovered to $40\pm3\%$ at 30 min and $56\pm7\%$ of control at 1 h (n = 4).

The results with indomethacin do not agree with those obtained by Manku & Horrobin (1976) who found indomethacin equally effective in inhibiting noradrenaline and Ca²⁺ at 30°C. The experiments were therefore repeated at 30°C to determine whether temperature is the factor responsible for reducing the inhibitory effect of indomethacin against Ca²⁺. The result, however, was similar to that obtained at 37°C and showed that at 30°C 3.6 times

more (95% CI, 4.6-3) indomethacin was needed to inhibit Ca²⁺ to the same extent as noradrenaline.

In further experiments the cyclo-oxygenase inhibitor 5,8,11,14-eicosatetraynoic acid (ETA) was used in place of indomethacin. ETA did not alter resting perfusion pressure but caused inhibition of responses to both noradrenaline and Ca^{2+} , and again Ca^{2+} -induced responses were more resistant to inhibition than those induced by noradrenaline (Figure 1b). The IC₅₀ of ETA against noradrenaline (2 μ g/ml) was 3.6 μ g/ml (95% CI, 39.5-0.4) but against Ca^{2+} (100 μ g/ml) was 7.7 μ g/ml (95% CI, 14-4).

Release of prostaglandin E2-like material


The extraction method achieved complete recovery of 1 ng/ml of authentic PGE_2 ($96\pm2.4\%$, n=4) and no partitioning of PGE_2 occurred into the liquid paraffin. The resting release of PGE_2 from tissues perfused with high K^+/Ca^{2+} -deficient depolarizing solution was 19 ± 8 pg of PGE_2 equivalents/min. An approximate EC_{50} of Ca^{2+} ($100\,\mu\text{g/ml}$) was then perfused through tissues and this increased the perfusion pressure from 27 ± 6 to 167 ± 21 mmHg. However, the amount of PGE_2 activity released remained unaltered at 20 ± 10 pg PGE_2 equivalents/min during the period of sustained constriction (n=4). Using the

same experimental conditions, it was shown previously that rat mesenteric blood vessels release $50\pm20\,\mathrm{pg}$ PGE₂ equivalents/min when perfused with Krebs-Henseleit solution. An approximate EC₅₀ of noradrenaline (2 µg/ml) which raised the perfusion pressure from 22 ± 3 to $116\pm10\,\mathrm{mmHg}$, caused a significant concurrent increase in prostaglandin release to $430\pm160\,\mathrm{pg}\,\mathrm{PGE}_2$ equivalents/min (Coupar, 1980a).

Effect of prostaglandins on Ca^{2+} -induced responses in the presence of indomethacin, ETA and papaverine

The response to the EC₅₀ of Ca^{2+} (100 µg/ml) was depressed by $51 \pm 4\%$ (n = 13) after 15 min of perfusion with 62 µg/ml of indomethacin. While maintaining indomethacin in the perfusate, prostaglandins were perfused through tissues at increasing concentrations and responses to the EC₅₀ of Ca²⁺ were recorded at each prostaglandin level. Each prostaglandin concentration was maintained in the perfusate for 10 min before inducing constriction with Ca²⁺. PGA₁, and the chemically stable analogue of PGH₂, U-46619, restored Ca²⁺-induced responses to preindomethacin control values. U-46619 was more potent than PGA₁ but the slope of the log concentration-effect curve was significantly smaller than that of PGA₁ (P < 0.025). The results are shown in Figure 2.

U-46619 and PGA₁ caused an additional rise in

Figure 2 Dose-response curves of U-46619 (O) and prostaglandin A_1 (PGA₁, \square) in reversing the response to the EC₅₀ of Ca²⁺ depressed by indomethacin. The upper horizontal line represents the mean response to the EC₅₀ of Ca²⁺ (100 μ g/ml) in the absence of indomethacin; while the lower broken line is the response to Ca²⁺ after 15 min perfusion of tissues with indomethacin (62 μ g/ml). Each concentration of U-46619 and PGA₁ was perfused for 10 min before inducing constriction with Ca²⁺ and each point is a mean from 5 tissues. Bars represent s.e.means.

pressure at the concentrations which fully restored the indomethacin-depressed response to Ca^{2+} . These concentrations were 200 ng/ml of U-46619 which increased basal perfusion pressure by 15 ± 1 mmHg (n=5) and 6μ g/ml of PGA₁ which increased the pressure by 15 ± 2 mmHg (n=5). The lower concentrations of U-46619 and PGA₁, which caused partial reversal of indomethacin-induced response to Ca^{2+} , did not affect resting perfusion pressure.

PGE₂ in concentrations ranging from 60 ng to $20 \mu g/ml$, did not cause any rise in perfusion pressure or restoration of the indomethacin-depressed response to Ca²⁺ (n = 5).

PGE₂ (6-600 ng/ml) and U-46619 (200 ng/ml) also both failed to restore the response to the EC₅₀ of Ca^{2+} -depressed by ETA (10 μ g/ml, n = 4). PGA₁ was not investigated for possible reversal of ETA-induced inhibition of Ca^{2+} .

Experiments were continued with U-46619 because of the paradoxical results that it was more potent than PGA₁ in reversing indomethacin, but failed to produce any reversal of the inhibition caused by the cyclo-oxygenase inhibitor, ETA. Therefore, U-46619 was next tested to determine whether it reversed the depression of Ca²⁺-induced responses caused by the non-cyclo-oxygenase inhibitor, papaverine. The results are shown in Figure 3a. The control dose-response curve of Ca2+ was significantly reduced in slope ($P \le 0.005$) and moved to the right $(P \le 0.001)$ by perfusing $4 \mu g/ml$ of papaverine through the tissues for 15 min. Inclusion of 200 ng/ml of U-46619 in the solution containing papaverine completely restored responses to control levels. Using the same experimental conditions it was shown previously that 200 ng/ml of PGE₂ completely restores indomethacin- and ETA-depressed responses to noradrenaline, but has no effect on responses to noradrenaline depressed by papaverine (Coupar, 1980a).

Effect of U-46619 on the calcium log concentrationeffect curve

Since U-46619 was found to have potent actions in restoring indomethacin- and papaverine-depressed responses to Ca^{2+} , further experiments were performed to determine whether this effect was due to potentiation of Ca^{2+} -induced responses, regardless of indomethacin or papaverine. After establishing responses to cumulatively increasing concentrations of Ca^{2+} , the most effective restoring concentration of U-46619 (200 ng/ml) was equilibrated with tissues for 10 min and responses to Ca^{2+} obtained again. U-46619 caused a small but statistically significant 1.6 fold (95% CI, 2.0-1.2) potentiation of Ca^{2+} -induced responses (P < 0.05, n = 6). The results are shown in Figure 3b.

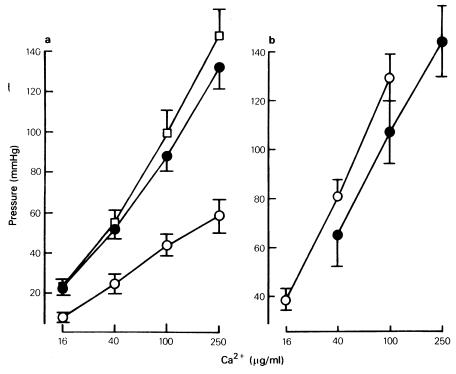


Figure 3 Effect of U-46619 on cumulative dose-response curves to Ca^{2+} . Each concentration of Ca^{2+} was perfused through tissues for 1.5 min and dose-response curves were produced every 20 min. (a) The control curve to Ca^{2+} (\blacksquare) was significantly reduced in slope and moved to the right after 15 min perfusion of tissues with $4 \mu g/ml$ of papaverine (\bigcirc). Constrictor responses to Ca^{2+} in the continued presence of papaverine were completely restored to normal values by a 10 min perfusion with 200 ng/ml of U-46619 (\square) (n=5). (b) The control curve to Ca^{2+} (\blacksquare) was significantly moved to the left after 10 min perfusion of tissues with 200 ng/ml of U-46619 (\bigcirc), (P<0.05, n=6). Bars represent s.e.means.

Discussion

The present results show that indomethacin decreases the constrictor response of rat mesenteric blood vessels to both Ca²⁺ and noradrenaline. However, considerably more indomethacin (5.5 times) was required to reduce the response to Ca2+ to the same extent as noradrenaline. This is not in agreement with the result of Manku & Horrobin (1976) who found the IC₅₀ of indomethacin was approximately 7 μ g/ml against both noradrenaline and Ca²⁺. The similar IC₅₀ of indomethacin against the two agonists was part of the evidence which led them to suggest that prostaglandin may be necessary to the action of noradrenaline as well as Ca2+. The different temperatures used in the present study (37°C) and that of Manku & Horrobin (30°C) do not explain the different IC₅₀ values for indomethacin against Ca²⁺. Manku & Horrobin (1976) used Krebs-Henseleit solution containing the normal amount of Ca²⁺; therefore it is possible that perfusion with high potassium/Ca²⁺-deficient solution decreases the inhibitory effect of indomethacin against Ca²⁺ by an as yet undetermined mechanism. Alternatively, it is possible that indomethacin may be more effective against bolus doses of Ca²⁺, as used by Manku & Horrobin (1976), than against equilibrium responses to Ca²⁺ as obtained in this study. For these reasons, direct comparison between this study and the study of Manku & Horrobin should be treated with reservation.

It must be stressed that high concentrations of indomethacin, similar to those used in the present experiments, have been shown to inhibit the accumulation and binding of Ca2+ by vascular and other smooth muscles (Northover, 1971; 1972; 1973). Also, similar high concentrations of indomethacin have been shown to inhibit Ca2+-activated ATPase and the reaction between ATP and rabbit muscle actomyosin (Gorog & Kovacs, 1970). The present results showed that responses to noradrenaline and Ca²⁺ especially recover after changing indomethacin-free solution. No such recovery would be expected if indomethacin were acting solely to inhibit prostaglandin synthesis, since kinetic studies using cell-free systems have shown indomethacin to be a 'competitive irreversible inhibitor' of cyclooxygenase (Flower, 1974). Further, indomethacin inhibits cyclo-oxygenase in rat tissues in vivo for at least 24 h (Fitzpatrick & Wynalda, 1976). Manku & Horrobin (1976) have also demonstrated that the inhibitory effect of indomethacin on vasoconstriction is readily reversed on changing to indomethacin-free solution. It was suggested that although this effect could be unrelated to prostaglandin synthesis inhibition, extrapolation from cell-free and in vivo systems to isolated preparations can be misleading because they do not take account of de novo enzyme synthesis and persistance of indomethacin respectively. Ideally, in in vitro experiments, a minimum concentration of indomethacin should be used to inhibit cyclooxygenase selectively. Unfortunately, this concentration has not yet been adequately established.

An attempt was made to clarify whether prostaglandin synthesis is necessary for the vasoconstrictor effect of Ca²⁺ by the use of a second cyclo-oxygenase inhibitor. 5,8,11,14-Eicosatetraynoic acid (ETA) was selected because it is chemically unrelated to indomethacin and appears to act as a false substrate on the catalytic site of cyclo-oxygenase where its action is rapid and irreversible (Flower, 1974). Even so, ETA inhibited responses to both noradrenaline and Ca2+ and like indomethacin, was more effective against noradrenaline. Previous results have shown that the inhibitory effect of ETA on noradrenalineinduced responses of rat mesenteric blood vessels is selective, since inhibition is overcome by adding PGE₂ to the perfusate (Coupar, 1980a). However, there is as yet no information in the literature concerning any potential non-selective antagonism of Ca²⁺ by ETA.

Exogenous prostaglandins were next added to the solutions containing the cyclo-oxygenase inhibitors to determine whether the inhibition of vasoconstrictor responses was due to prostaglandin deficiency. In this respect, PGE₂ was ineffective at restoring the response to Ca²⁺ depressed by indomethacin (62 µg/ml) or ETA (10 µg/ml). Again these results are in contrast to those of Manku & Horrobin (1976) who found that low concentrations of PGE₂ (5 ng/ml) reverse responses to Ca²⁺ depressed by 64 µg/ml of indomethacin.

Moreover, if PGE₂ is necessary to Ca²⁺-induced responses, as Manku & Horrobin claim, Ca²⁺ may be expected to cause the release of the prostaglandin as does noradrenaline (Wolfe *et al.*, 1979; Coupar, 1980a). Although a small amount of PGE₂-like release was detected from the blood vessels, there was no concurrent increase in PGE₂ release when constriction was induced by Ca²⁺. It is possible that another prostaglandin may have been released but

was not detected by the bioassay tissue. For example, prostacyclin (PGI₂) spontaneously hydrolyses at physiological pH to 6-oxo-PGF_{1 α} which is virtually inactive on the rat fundus strip (Whittle, Mugridge & Moncada, 1979). Although PGI₂ is released from rat mesenteric blood vessels (Horton, Pipili & Poyser, 1980) it is unlikely that it aids Ca²⁺-induced constriction since it directly inhibits responses to noradrenaline and does not affect the response to extracellular Ca²⁺ (Ally, Barrette, Cunnane, Horrobin, Karmali, Karmazyn, Manku, Morgan & Nicolaou, 1978).

Apart from PGE₂, two other stable compounds were tested for ability to restore responses to Ca²⁺ in the presence of indomethacin. These were PGA₁, which has been shown to restore indomethacin-depressed responses to noradrenaline to above control level (Coupar & McLennan, 1978) and the stable epoxymethano analogue of PGH₂, U-46619.

Prostaglandin A₁ restored responses to Ca²⁺ in the presence of 62 µg/ml of indomethacin over the same concentration range (0.2-6 µg/ml) as shown previously to restore responses to noradrenaline depressed by only 25 µg/ml of indomethacin (Coupar & McLennan, 1978). It is likely that these effects of PGA₁ are pharmacological rather than physiological because of the relatively large doses needed and the doubt that PGA₁ is a naturally occurring prostaglandin. U-46619 also completely restored responses to Ca²⁺ but was more potent than PGA₁ and produced its effect over a wider concentration range. The differing results in the presence of PGE2, A1 and U-46619 indicate, perhaps surprisingly, that the high concentration of indomethacin used (62 µg/ml) does not cause general tissue depression. The mechanism by which PGA₁ reverses the responses to Ca²⁺ in the presence of indomethacin is not known. In a previous study, it was suggested that PGA1 restores indomethacin-depressed responses to noradrenaline by acting on a different receptor from that acted on by PGE₁ and E₂ (Coupar & McLennan, 1978). Although there is no direct evidence, the mechanism by which U-46619 restores the response to Ca2+ in the presence of indomethacin may be related to its ability to decrease the amount or effect of cyclic AMP. The indirect evidence for this suggestion is that cyclic AMP is implicated as the intracellular mediator of vasodilatation (see Anderson, Nilsson, Wikberg, Johanson & Lundholm, 1975; Demesy-Waeldele & Stoclet, 1977; Gagnon, Regoli & Rioux, 1980). Further, the present results show that U-46619 reverses responses to Ca2+ depressed by papaverine, which is a phosphodiesterase inhibitor (Weiss, 1975). Finally, indomethacin at moderate concentrations. has been shown to inhibit phosphodiesterase (Flower, 1974). If the above proposal is correct, then the failure of U-46619 to reverse responses to Ca²⁺

depressed by ETA, implies that ETA does not produce its effect by elevation of intracellular levels of cyclic AMP. Although U-46619 (200 ng/ml) alone caused a 1.6 fold potentiation of responses to Ca²⁺, this small direct effect is insufficient to account for the full reversal of indomethacin- and papaverine-induced inhibition of Ca²⁺.

Previous results have shown that U-46619 constricts rat mesenteric blood vessels perfused with Krebs-Henseleit solution containing the normal amount of Ca²⁺ (Coupar, 1980a). The present results therefore indicate that the prostanoid relies mainly on the presence of extracellular Ca²⁺ to produce its effect. The small rise in perfusion pressure (15 mmHg) produced by U-46619 (200 ng/ml) in Ca²⁺-free depolarizing solution may result from mobilization or sequestration of a small intracellularly bound store of Ca²⁺. It is becoming apparent that U-46619 mimics the effects of thromboxane A₂ (TXA₂) more closely than PGH₂. For example, U-46619 not only induces vasoconstriction but also stimulates platelet aggregation and constricts the air-

ways (Beckmann & Leovey, 1976; Malmsten, 1976). Although PGH₂ also produces these effects, they are probably mediated by its conversion to TXA₂ (Coleman, Humphrey, Kennedy, Levy & Lumley, 1980)

In conclusion, the results described in this paper do not support the hypothesis that prostaglandin synthesis is necessary to aid Ca²⁺-induced vasoconstriction. PGE₂, although it might be necessary for the constrictor action of noradrenaline, is not released by Ca²⁺ and does not reverse the inhibition of Ca²⁺-induced constriction caused by high concentrations of indomethacin or ETA. The results do not exclude the possibility that a prostaglandin might facilitate intracellular Ca²⁺ release triggered by the action of a vasoconstrictor.

I gratefully acknowledge the generosity of the following Companies for samples of their drugs: Merck, Sharp & Dohme (Australia) Pty Ltd, for indomethacin; Roche Products Pty Ltd, for 5,8,11,14-eicosatetraynoic acid; and the Upjohn Company for prostaglandins E₂, A₁ and U-46619.

References

- ALLY, A.I., BARRETTE, W.E., CUNNANE, S., HORROBIN, D.F., KARMALI, R.A., KARMAZYN, M., MANKU, M.S., MORGAN, R.O. & NICOLAOU, K.C. (1978). Prostacyclin inhibits intracellular calcium release. *J. Physiol.*, **276**, 40-41P.
- ANDERSSON, F., NILSSON, K., WIKBERG, J., JOHANSSON, S. & LUNDHOLM, L. (1975). Cyclic nucleotides and the contraction of smooth muscle. *Advances in Cyclic Nucleotide Research*, Vol. 5, ed. Drummond, G.I., Greengard, P. & Robinson, G.A. pp. 491–518. New York: Raven Press.
- BECKMANN, M.L. & LEOVEY, E. (1976). Report of the 1976 Winter prostaglandin conference, Vail, Colorado. *Prostaglandins*, 11, 431-445.
- BRIGGS, A.H. (1962). Calcium movements during potassium contracture in isolated rabbit aortic strips. *Am. J. Physiol.*, **203**, 849–852.
- COLEMAN, R.A., HUMPHREY, P.P.A., KENNEDY, I., LEVEY, G.P. & LUMLEY, P. (1980). U-46619, a selective thromboxane A₂-like agonist? *Br. J. Pharmac.*, **68**, 127-128P.
- COLQUHOUN, D. (1971). Lectures on Biostatistics. Oxford: Clarendon Press.
- COUPAR, I.M. (1980a). Prostaglandin action, release and inactivation by rat isolated perfused mesenteric blood vessels. Br. J. Pharmac., 68, 757-763.
- COUPAR, I.M. (1980b). Is prostaglandin synthesis necessary for Ca⁺⁺-induced vasoconstriction of rat mesenteric blood vessels? *Proc. Austr. Physiol. Pharmac. Soc.*, 11, 42P.
- COUPAR, I.M. & McLENNAN, P.L. (1978). The influence of prostaglandins on noradrenaline-induced vasoconstriction in isolated perfused mesenteric blood vessels of the rat. Br. J. Pharmac., 62, 51-59.

- CUTHBERT, A.W. & SUTTER, M.C. (1965). The effect of drugs on the relation between the action potential discharge and tension in mammalian vein. *Br. J. Pharmac.*, **25**, 592–601.
- DEMESY-WAELDELE, F. & STOCLET, J-C. (1977). Effect of papaverine on cyclic nucleotide levels in the isolated rat aorta. *Eur. J. Pharmac.*, **46**, 63–66.
- FITZPATRICK, F.A. & WYNALDA, M.A. (1976). *In vivo* suppression of prostaglandin biosynthesis by non-steroidal anti-inflammatory agents. *Prostaglandins*, 12, 1037-1051.
- FLOWER, R.J. (1974). Drugs which inhibit prostaglandin biosynthesis. *Pharmac. Rev.*, **26**, 33-67.
- GAGNON, G., REGOLI, D. & RIOUX, F. (1980). Studies on the mechanism of action of various vasodilators. *Br. J. Pharmac.*, 70, 219–227.
- GOROG, P. & KOVACS, I.B. (1970). Effect of antiinflammatory compounds on actomyosin-adenosine triphosphate interaction. *Biochem Pharmac.*, 19, 2289-2294.
- GRAND, R.J.A., PERRY, S.V. & WEEKS, R.A. (1979). Troponin C-like proteins (calmodulins) from mammalian smooth muscle and other tissues. *Biochem. J.*, 77, 521-529.
- HORROBIN, D.F., MANKU, M.S., KARMALI, R., NASSAR, B.A. & DAVIES, P.A. (1974). Aspirin, indomethacin, catecholamine and prostaglandin interactions on rat arterioles and rabbit hearts. *Nature*, *Lond.*, 250, 425-426.
- HORTON, E.W., PIPILI, S. & POYSER, N.L. (1980). The effect of nerve stimulation on release of prostacyclin (PGI₂) from the rat and rabbit mesenteric arteries. *Br. J. Pharmac.*, 70, 87-88P.
- HUDGINS, P.M. & WEISS, G.B. (1968). Differential effects

- of calcium removal upon vascular smooth muscle contraction induced by noradrenaline, histamine and potassium. *J. Pharmac. exp. Ther.*, **159**, 91–97.
- JHAMANDAS, K.H. & NASH, C.W. (1967). Effects of inorganic anions on the contractility of vascular smooth muscle. Can. J. Physiol. Pharmac., 45, 675-682.
- MALMSTEN, C. (1976). Some biological effects of prostaglandin endoperoxide analogues. *Life Sci.*, **18**, 169–176.
- MANKU, M.S. & HORROBIN, D.F. (1976). Indomethacin inhibits responses to all vasoconstrictors in rat mesenteric vascular bed: restoration of responses by prostaglandin E₂. Prostaglandins, 12, 369-376.
- McGREGOR, D.D. (1965). The effect of sympathetic nerve stimulation on vasoconstrictor responses in perfused mesenteric blood vessels of the rat. J. Physiol., 177, 21-30.
- MOORE, P.G., SHIRLEY, E.A. & EDWARDS, D.E. (1972). Standard Statistical Calculations. pp. 55-61, London: Pitman Publishing.
- NORTHOVER, B.J. (1968). The effect of drugs on constriction of isolated depolarized blood vessels in response to calcium or barium. *Br. J. Pharmac.*, **34**, 417–428.
- NORTHOVER, B.J. (1971). Mechanism of the inhibitory action of indomethacin on smooth muscle. Br. J. Pharmac., 41, 540-551.
- NORTHOVER, B.J. (1972). The effects of indomethacin on calcium, sodium, potassium and magnesium fluxes in various tissues of the guinea-pig. *Br. J. Pharmac.*, **45**, 651-659.

- NORTHOVER, B.J. (1973). Effect of anti-inflammatory drugs on the binding of calcium to cellular membranes in various human and guinea-pig tissues. *Br. J. Pharmac.*, **48**, 496–504.
- PERRY, S.V. & GRAND, R.J.A. (1979). Mechanisms of contraction and the specialized protein components of smooth muscle. *Br. med. Bull.*, 35, 219-226.
- UNGER, W.G., STAMFORD, I.F. & BENNETT, A. (1971). Extraction of prostaglandins from blood. *Nature*, 233, 336-337.
- WAUGH, W.H. (1962). Role of calcium in contractile excitation of vascular smooth muscle by epinephrine and potassium. *Circulation Res.*, 11, 927-940.
- WEISS, B. (1975). Differential activation and inhibition of the multiple forms of cyclic nucleotide phosphodiesterase. Advances in Cyclic Nucleotide Research, Vol. 5. ed. Drummond, G.I., Greengard, P. & Robinson, G.A. pp. 195-211. New York: Raven Press.
- WHITTLE, B.J.R., MUGRIDGE, K.G. & MONCADA, S. (1979). Use of the rabbit transverse stomach-strip to identify and assay prostacyclin, PGA₂, PGD₂ and other prostaglandins. Eur. J. Pharmac., 53, 167-172.
- WOLFE, L.S., ROSTWOROWSKI, K. & MANKU, M. (1979). Measurement of prostaglandin synthesis and release from rat aortic tissue and from the perfused mesenteric artery by gas chromatography mass spectrometric methods. In: *Prostacyclin.* ed. Vane, J.R. & Bergstrom, S. pp. 113-118. New York: Raven Press.

(Received April 21, 1981. Revised June 17, 1981.)